Peter C. Lippert portrait
  • Assistant Professor, Geology & Geophysics
  • Affiliated Faculty, Global Change & Sustainability Center
801-581-4599

Research Statement

I use field study in conjunction with paleomagnetic, rock magnetic, and collaborative stratigraphic, geochemical, and geochronologic approaches to investigate a wide range of geological puzzles. Specifically, I utilize the unique information encoded in the magnetic and chemical properties of geological materials to understand tectonic, paleoclimate, and paleoecological processes, and to recognize feedbacks between geodynamics, climate change, and surface processes. 

I currently spend most of my time studying the tectonic history of the Tibetan Plateau and India-Asia collision zone, ecological and surface process responses to Cenozoic global climate change events, and exploring non-charcoal-based methods for detecting paleo-wildfire.

Given the scale of these problems, I draw from a diverse quiver of approaches and strong collaborations with other geoscientists. My work involves a substantial and essential component of field study. I also utilize archived material (e.g., from ocean and lake cores), as well as construct compilations of magnetic, geochemical, and ecological information. Most of my research involves analytical laboratory work, which includes a variety of magnetic experiments as well as SEM and TEM microscopy. My collaborations include stable isotope, trace-element, and organic geochemistry, low-temperature thermochronology, geochronology, structural analysis, marine micropaleontology, and sedimentary basin analysis.

My research program can be broadly defined into the following three areas (please see my personal website for more information).

TECTONICS & GEODYNAMICS

Most of my past and ongoing projects in tectonics are driven by questions concerning the dynamics of convergent orogens, the suturing process, and the processes responsible for transforming deep marine basins into high mountain ranges. My primary approach to understanding these processes combines field geology, regional synthesis, and paleomagnetism, which is the only means by which we can quantify paleolatitude and the magnitude of vertical axis rotation of crustal materials.

Some examples include:

1) The suturing process: Insight from the India-Asia collision zone. Specifically, characterizing the paleogeography of Southern Tibet and Greater India for the past 120 million years.

2) Geological records of early Paleogene tectonics in Northern Qiangtang, North-Central Tibetan Plateau.

3) Did the Altyn Tagh Fault continue beyond the northern margin of Tibet? Implications for strain partitioning during continent-continent collision.

 

GEOCHRONOLOGY & PALEOCLIMATE CHANGE

Many exciting frontiers in the geosciences are focused on recognizing lead-lag relationships between surface processes and tectonics, determining rates of planetary processes, and establishing confidant correlations between intra-basin and global events. I use magnetostratigraphy, often coupled with radiochronology and biostratigraphy, to accurately and precisely date and correlate stratigraphic intervals. I am also developing projects and collaborations that will give my students and me experience applying cyclostratigraphic methods to a variety of surface process studies. Many of my current projects are centered on records recovered during IODP Leg 342 (Paleogene Newfoundland Sediment Drifts), but I also apply these methods to continental sections. 

Some examples include:

1) Timescales of enviromental change across the Eocene-Oligocene Transition, and the Oligocene-Miocene Boundary of the North Atlantic.

2) Astronomical calibration of the Cenozoic geomagnetic polarity timescale.

3) Timescales and field morphology of geomagnetic reversals.

4) Chronostratigraphy of Cenozoic basins in the Qiangtang and Lhasa Terranes of the Tibetan Plateau.

 

CRUSTAL & SURFACE PROCESSES

A substantial component of my research program couples studies of the magnetic properties and mineralogy of rocks with microscopic, chemical, or paleontological methods to study a wide range of geological processes.

Some examples include:

1) Developing non-charcoal-based proxies for modern and paleowildfire.

2) Revealing changes in sediment provenance, orbital controls on lithostratigraphy, and changes in deep-water currents.

3) Detecting and quantifying magnetofossil diversity during rapid climate change events.

4) Characterizing the rock magnetism of brittle fault zones.

5) Rock magnetic proxies for fluid flow and remagnetization in collisional orogens.

6) Low-temperature and biologically-mediated fluid-rock interactions in young oceanic basalts.

Research Keywords

  • Tectonics
  • Surface Processes
  • Stratigraphy
  • Paleoclimatology
  • Geology
  • Geochronology

Presentations

  • Zhang, R., D.B. Jiang, G. Ramstein, Z.S. Zhang, P.C. Lippert, and E.T Yu. April 2017. The northward shift of the Tibetan Plateau as an important factor for understanding East Asian climate during the Cenooic. EGU General Assembly. Abstract EGU2017-11924, Vienna, Switzerland. Poster, Accepted, 04/2017.
  • Wagner, C. and P.C. Lippert. February 2017. Relating magnetotactic bacteria and microfossil assemblages in coastal environments to environmental change before, during, and after an abrupt global warming event. Global Change and Sustainability Center Research Symposium. Salt Lake City, Utah. Poster, Presented, 02/2017.
  • P.C. Lippert, V.E. Taylor, S.M. Bohaty, C. Wagner, C. Xuan, and P.A. Wilson. December 2016. The demise of a diverse magnetofossil assemblage across the Eocene-Oligocene Transition in a Northwest Atlantic sediment drift. AGU Fall Meeting, Abstract GP34D-02, San Francisco, California. Invited Talk/Keynote, Presented, 12/2016.
  • van Peer, T., C. Xuan, D. Liebrand, P.C. Lippert, and P.A. Wilson. December 2016. Astrochronology of a late Oligocene to early Miocene magnetostratigraphy from the northwest Atlantic. AGU Fall Meeting, Abstract GP43B-1244, San Francisco, California. Poster, Presented, 12/2016.
  • Huang, W., P.C. Lippert, M.J. Jackson, M.J. Dekkers, Y. Zhang, J. Li, X.H. Hu, and Z.J. Guo. December 2016. Remagnetization of carbonate rocks in southern Tibet: Perspective from rock magnetic and petrographic investigation. AGU Fall Meeting, Abstract GP31A-1291, San Francisco, California. Poster, Presented, 12/2016.
  • Owen Jones, G., S.M. Bohaty, P.A. Wilson, P.C. Lippert, T. van Peer*, and D. Liebrand. November 2015. Early-to-Mid Oligocene stratigraphy and palaeoceanography of Newfoundland margin sediment drifts (IODP Exp. 342). 2016 UK IODP General Conference, Royal Geographical Society, London. Poster, Presented, 11/2016.
  • Zhuang, G.S., S. Johnstone, J.K. Hourigan, P.C. Lippert, B. Ritts, A.C. Robinson, and E. Sobel. September 2016. Partitioning of crustal shortening in the northern Tibetan Plateau: Constraints from thermochrology studies. GSA Annual Meeting, Abstract 284647, Denver, Colorado. Conference Paper, Presented, 09/2016.
  • Darata, R.C., T.A. Rivera, P.C. Lippert, B.R. Jicha, and M.D. Schmitz. September 2016. 40Ar/39Ar Sanidine Dating and Paleomagnetic Analysis of the Blue Creek Flow (Yellowstone Volcanic Field). GSA Annual Meeting, Abstract 284541, Denver, Colorado. Conference Paper, Presented, 09/2016.
  • Furlong, R.V., T.A. Rivera, P.C. Lippert, B.R. Jicha, and M.D. Schmitz. September 2016. New 40Ar/39Ar and paleomagnetic data from the Bishop Mountain Flow, Yellowstone Volcanic Field. GSA Annual Meeting, Abstract 278829, Denver, Colorado. Poster, Presented, 09/2016.
  • Vincent, J.S., T.A. Rivera, B.R. Jicha, P.C. Lippert, and M.D. Schmitz. September 2016. Lithology of the Tuff of Lyle Springs, Yellowstone Volcanic Field. GSA Annual Meeting, Abstract 283812, Denver, Colorado. Poster, Presented, 09/2016.
  • Taylor, V.E., P.C. Lippert, C. Xuan, S.M. Bohaty, P.A. Wilson, D. Liebrand. August 2016. High-resolution geochemical and magnetic records from a new benchmark deep sea section across the Eocene-Oligocene transition. International Conference on Paleoceanography, Utrecht, The Netherlands. Poster, Presented, 08/2016.
  • van Peer, T.E.*, C. Xuan, P.C. Lippert, P.A. Wilson, and D. Liebrand. April 2016. A northwest Atlantic environmental magnetic perspective on the Oligocene-Miocene Transition. EGU General Assembly, Abstract EGU2016-9881, Vienna, Austria. Conference Paper, Presented, 04/2016.
  • Li, Z.Y., P.C. Lippert, L. Ding, P.P. Song, Y.H. Yue, D.J.J. van Hinsbergern. April 2016. Paleomagnetic constraints on the Mesozoic drift of the Lhasa terrane (Tibet) from Gondwana to Eurasia. EGU General Assembly, Abstract EGU2016-7012. Conference Paper, Presented, 04/2016.
  • Lippert, P.C., D.J.J. van Hinsbergen, W.T. Huang, and G. Dupont-Nivet. November 2015. A Great Greater India: A paleomagnetic perspective on the amount of Cenozoic subduction and underthrusting within the Central Himalaya. GSA Annual Meeting, Abstract 105-1, Baltimore, Maryland. Invited talk to GSA Special Nepal (Gorkha) Earthquake Session. Invited Talk/Keynote, Presented, 11/02/2015.
  • Lippert, P.C., W.T. Huang, D.J.J. van Hinsbergen, L. Ding, Z.Y. Li, and G. Dupont-Nivet. November 2015. Lhasa’s Jurassic-to-Paleocene Latitude: Implications for the Cenozoic Tectonics and Climate of Tibet. GSA Annual Meeting, Abstract 7-9, Baltimore, Maryland. Invited talk to Bridging Two Continents. Invited Talk/Keynote, Presented, 11/01/2015.
  • Peter C. Lippert, & Wentao Huang, Douwe van Hinsbergen, Guillaume Dupont-Nivet, Paul Kapp. (2015) What can the Cretaceous-to-Present Latitude History of the Lhasa Terrane tell us about Plate-Scale Deformation in the Tibetan-Himalayan Orogen?. Invited Talk/Keynote, Presented, 07/2015.
  • Peter C. Lippert, & Wentao Huang, Douwe van Hinsbergen, Guillaume Dupont-Nivet, Paul Kapp. (2015) What can the Cretaceous-to-Present Latitude History of the Lhasa Terrane tell us about Plate-Scale Deformation in the Tibetan-Himalayan Orogen?. Invited Talk/Keynote, Presented, 06/2015.
  • Invited Speaker, Institute of Geology & Geophysics, Chinese Academy of Sciences, Beijing. Invited Talk/Keynote, Presented, 06/2015.
  • PETER CRUZAN LIPPERT (2016) Big Science on the High Seas A Summer in the North Atlantic on IODP Leg 342. Invited Talk/Keynote, Presented, 04/2015.
  • Van Peer, T.E.*, C. Xuan, P.A. Wilson, D. Liebrand, and P.C. Lippert. April 2015. Revised Late Oligocene to Early Miocene magnetic stratigrapy recorded by drift sediments at Sites U1405 and U1406, IODP Expedition 342 (Newfoundland, NW Atlantic). EGU General Assembly, Abstract EGU2015-7441, Vienna, Austria. Poster. Poster, Presented, 04/2015.
  • Invited Colloquium Speaker, UC Davis. Invited Talk/Keynote, Presented, 03/2015.
  • Invited Colloquium Speaker, Idaho State University. Invited Talk/Keynote, Presented, 02/2015.
  • Van Peer, T.E.*, C. Xuan, P.A. Wilson, D. Liebrand, and P.C. Lippert. January 2015. Revised Late Oligocene to Early Miocene magnetic stratigraphy recorded by drift sediments at Site U1406, IODP Expedition 342 (Newfoundland, northwest Atlantic). Magnetic Interactions, Leeds, United Kingdom. Poster. Poster, Presented, 01/2015.

Geographical Regions of Interest

  • Canada
    High Canadian Arctic, Newfoundland, Baffin Island.
  • China
    Western China (Tibet, Gansu, Inner Mongolia, Xinjiang, Qinghai, Sichuan, Ningxia).
  • Iceland
  • Mongolia
  • Nepal
  • United States of America
    California, Utah, Idaho, Wyoming, Arizona, New Jersey, Gulf Coast.

Research Equipment and Testing Expertise

  • 2G/WSGI DC-SQUID superconducting rock magnetometer: full vector characterization and measurement of magnetic remanence. Contact: Pete Lippert .
  • 2G/WSGI alternating field demagnetizer with peak fields of 150 mT. Contact: Pete Lippert .
  • AGICO JR-6A automated spinner magnetometer: full vector characterization and measurement of magnetic remanence. Contact: Pete Lippert .
  • AGICO MFK1 multifunction kappabridge with furnace, liquid nitrogen cryostat, and 3D anisotropy rotator: measures magnetic susceptibility as a function of a) temperature (-196-700C); b) field strength; c) field frequency; and d) orientation. Measurements can be performed in ambient air or argon. Characterizes magnetic grain size, composition, and fabrics. Contact: Pete Lippert .
  • ASC IM-10-30 impulse magnetizer capable of imparting isothermal remanent magnetizations up to 2.7 Tesla. Contact: Pete Lippert .
  • ASC TD-48 thermal demagnetizer with custom-built Kiethley temperature monitor and data logger: magnetically shielded oven with precision temperature control and monitoring. Contact: Pete Lippert .
  • Applied Physics System 3-axis fluxgate magnetometer. Contact: Pete Lippert .
  • Gas-powered and electric rock-coring drills (Pomeroy designed). Contact: Pete Lippert .
  • Lakeshore/PMC Model 3900-04 vibrating sample magnetometer. Room-temperature measurements of magnetic remanence, coercivity, and anisotropy capable of characterizing magnetic composition, grain size, and coercivity distributions. Contact: Pete Lippert .
  • Leitz transmitted, polarizing, and reflected light petrographic microscope with Leica digital camera. Contact: Pete Lippert .
  • Low-magnetic rock sawing equipment and dedicated rock coring drill press. Contact: Pete Lippert .
  • Magnon AFD300 alternating field demagnetizer with peak fields of 300 mT and ability to impart anhysteretic remanent magnetizations (ARM). Contact: Pete Lippert .
  • PMC Model 2900-02 alternating gradient field magnetometer. Room-temperature measurements of magnetic remanence, coercivity, and anisotropy capable of characterizing magnetic composition, grain size, and coercivity distributions. Contact: Pete Lippert .

Publications

  • Huang, W., P. C. Lippert, Y. Zhang, M. J. Jackson, M. J. Dekkers, J. Li, X. Hu, B. Zhang, Z. Guo, and D. J. J. van Hinsbergen (2017), Remagnetization of carbonate rocks in southern Tibet: Perspectives from rock magnetic and petrographic investigations, Journal of Geophysical Research: Solid Earth, 122(4), 2434-2456, doi:10.1002/2017JB013987. Published, 04/12/2017.
    http://onlinelibrary.wiley.com/doi/10.1002/2017JB0...
  • Huang, W., P. C. Lippert, M. J. Jackson, M. J. Dekkers, Y. Zhang, J. Li, Z. Guo, P. Kapp, and D. J. J. van Hinsbergen (2017), Remagnetization of the Paleogene Tibetan Himalayan carbonate rocks in the Gamba area: Implications for reconstructing the lower plate in the India-Asia collision, Journal of Geophysical Research: Solid Earth, 122(2), 808-825, doi:10.1002/2016JB013662. Published, 02/02/2017.
    http://onlinelibrary.wiley.com/doi/10.1002/2016JB0...
  • Egger, L.M., K.K. Sliwinska, T.E. van Peer, D. Liebrand, P.C. Lippert, O. Friedrich, P.A. Wilson, R.D. Norris, and J. Pross, 2016. Magnetostratigraphically calibrated dinoflagellate cyst bioevents for the uppermost Eocene to lowermost Miocene of the western North Atlantic (IODP Expedition 342, Paleogene Newfoundland sediment drifts). Review of Palaeobotany and Palynology, 234, 159-185, doi:10.1016/j.revpalbo.2016.08.002. Published, 08/18/2016.
    http://www.sciencedirect.com/science/article/pii/S...
  • Li, Z.Y., L. Ding, P.C. Lippert, P.P. Song, Y.H. Yue, and D.J.J. van Hinsbergen, 2016. Paleomagnetic constraints on the Mesozoic drift of the Lhasa terrane (Tibet) from Gondwana to Eurasia. Geology, 44, 727-730, doi:10.1130/G38030.1.. Published, 08/01/2016.
    http://geology.gsapubs.org/content/early/2016/08/0...
  • Song, P.P., L. Ding, Z.Y. Li, P.C. Lippert, T.S. Yang, X.X. Zhao, J. Fu, and Y. Yue, 2015. Late Triassic paleolatitude of the Qiangtang block: Implications for the closure of the Paleo-Tethys ocean. Earth Planet. Sci. Letters, 42, 69-83, doi:10.1016/j.epsl.2015.05.020. Published, 05/12/2015.
  • Huang, W., D. J. J. van Hinsbergen, P. C. Lippert, Z. Guo, and G. Dupont-Nivet (2015), Paleomagnetic tests of tectonic reconstructions of the India-Asia collision zone, Geophysical Research Letters, 42(8), 2642-2649, doi:10.1002/2015GL063749. Published, 04/17/2015.
  • Huang, W.T., G. Dupont-Nivet, P.C. Lippert, D.J.J. van Hinsbergen, M.J. Dekkers, Z.J. Guo, R. Waldrip*, M. Ganerød, X.C. Li, and P. Kapp. 2015. What was the Paleogene latitude of the Lhasa terrane? A reassessment of the geochronology and paleomagnetism of Linzizong volcanic rocks (Linzhou Basin, Tibet). Tectonics, 34, 594-622, doi:10.1002/2014TC003787. Published, 03/26/2015.
    http://onlinelibrary.wiley.com/doi/10.1002/2014TC0...
  • Huang, W.T., G. Dupont-Nivet, P.C. Lippert, D.J.J. van Hinsbergen, M.J. Dekkers, Z.J. Guo, R. Waldrip, X.C. Li, X.R. Zhang, D.D. Liu, and P. Kapp, 2015. Can a primary remanence be retrieved from partially remagnetized Eocene volcanic rocks in the Nanmulin Basin (Southern Tibet) to date the India-Asia collision? J. Geophys. Res., doi:10.1002/2014JB011599. Published, 01/28/2015.
    http://onlinelibrary.wiley.com/doi/10.1002/2014JB0...
  • Huang, W.T., D.J.J. van Hinsbergen, M.J. Dekkers, E. Garzanti, G. Dupont-Nivet, P.C. Lippert, X.C. Li, M. Maffione, C.G. Langereis, X.M. Hu, Z.J. Guo, P. Kapp, 2015. Paleolatitudes of the Tibetan Himalaya from primary and secondary magnetizations of Jurassic to Lower Cretaceous sediments. G-Cubed, 16, 77-100, doi:10.1002/2014GC005624. Published, 01/15/2015.
    http://onlinelibrary.wiley.com/doi/10.1002/2014GC0...
  • Lippert, P.C., D.J.J. van Hinsbergen, and G. Dupont-Nivet, 2014. The Early Cretaceous to Present latitude of the central proto-Tibetan plateau: A paleomagnetic synthesis with implications for Cenozoic tectonics, paleogeography, and climate of Asia. In Towards an Improved Understanding of Uplift Mechanisms and the Elevation History of the Tibetan Plateau. Nie, J.S., G.D. Hoke, and B.K. Horton (eds.). GSA Special Paper 507, p. 1-21, doi:10.1130/2014.2507(01). Published, 08/2014.
    http://specialpapers.gsapubs.org/content/early/201...
  • Norris, R.D., P.A. Wilson, P. Blum, and the Expedition 342 Scientists, 2014. Proceedings of the Integrated Ocean Drilling Program, 342. Tokyo (IODP Management International, Inc.). Published, 03/2014.
    http://publications.iodp.org/proceedings/342/342ti...
  • Huang, W.T., G. Dupont-Nivet, G., P.C. Lippert, D.J.J. van Hinsbergen, and E. Hallot, 2013. Inclination shallowing in Eocene Linzizong sedimentary rocks from Southern Tibet: correction, possible causes and implications for reconstructing the India-Asia collision. Geophysical Journal International, 194, 1390-1411, doi:10.1093/gji/ggt188. Published, 09/2013.
    http://gji.oxfordjournals.org/content/194/3/1390.a...
  • Li, Z., L. Ding, P.C. Lippert, and H. Wei, 2013. Paleomagnetic constraints on the Cenozoic kinematic evolution of the Pamir plateau from the Western Kunlun Shan foreland. Tectonophysics, 603, 257-271, doi:10.1016/j.tecto.2013.05.040. Published, 09/2013.
    http://www.sciencedirect.com/science/article/pii/S...
  • Expedition 342 Scientists, 2012. Leg 342 Preliminary Report. Integrated Ocean Drilling Program Management Program, Inc. (College Station, TX). 263 pages. doi: 10.2204/iodp.pr.342.2012. Available online at: http://publications.iodp.org/preliminary_report/342/. Published, 10/2012.
    http://publications.iodp.org/preliminary_report/34...
  • van Hinsbergen, D.J.J., P.C. Lippert, G. Dupont-Nivet, N. McQuarrie, P.V. Doubrovine, W. Spakman , and T.H. Torsvik, 2012. Reply to Aitchison and Ali: Reconciling Himalayan ophiolite obduction and Asian magmatic arc records with a two-stage India-Asia collision model. Proc. Nat. Acad. Sci. USA. Published online, doi:10.1073/pnas.1208836109. Published, 10/2012.
    http://www.pnas.org/content/109/40/E2646.full
  • van Hinsbergen, D. J. J., P. C. Lippert, G. Dupont-Nivet, P. Kapp, P. G. DeCelles, and T. H. Torsvik, 2012. Reply to comment by Ali and Aitchison on "Restoration of Cenozoic deformation in Asia, and the size of Greater India." Tectonics, 31, TC4007, doi:10.1029/2012tc003144. Published, 08/2012.
    http://onlinelibrary.wiley.com/doi/10.1029/2012TC0...
  • van Hinsbergen, D.J.J., P.C. Lippert, G. Dupont-Nivet, N. McQuarrie, P.V. Doubrovine, W. Spakman , and T.H. Torsvik, 2012. Greater India Basin Hypothesis and a two-stage Cenozoic collision between India and Asia. Proc. Nat. Acad. Sci. USA, 109, 7659-7664, doi: 10.1073/pnas.1117262109. Published, 05/2012.
    http://www.pnas.org/content/109/20/7659.abstract
  • Schwartz, H., P.R. Renne, L.E. Morgan, M.W. Wildgoose, P.C. Lippert, S.R. Frost, K. Harvati, F. Schrenk, and C. Saanane, 2012. Geochronology of the Manyara Beds, northern Tanzania: Stratigraphy and new magnetostratigraphy and 40Ar/39Ar ages. Quaternary Geochronology, 7, 48-66, doi:10.1016/j.quageo.2011.09.002. Published, 02/2012.
    http://www.sciencedirect.com/science/article/pii/S...
  • van Hinsbergen, D.J.J., P. Kapp, G. Dupont-Nivet, P.C. Lippert, P.G. DeCelles, and T.H. Torsvik, 2011. Restoration of Cenozoic Deformation in Asia, and the size of Greater India. Tectonics, 30, TC5003, doi:10.1029/2011TC002908. Published, 10/2011.
    http://onlinelibrary.wiley.com/doi/10.1029/2011TC0...
  • Lippert, P.C., X.X. Zhao, R.S. Coe, and C.H. Lo, 2011. Palaeomagnetism and 40Ar/39Ar Geochronology of upper Palaeogene volcanic Rocks from Central Tibet: Implications for the Central Asia inclination anomaly, the palaeolatitude of Tibet, and post-50 Ma shortening within Asia. Geophys. J. Int., 184, 131-161, doi: 10.1111/j.1365-246X.2010.04833.x. Published, 01/2011.
    http://onlinelibrary.wiley.com/doi/10.1111/j.1365-...
  • Dupont-Nivet, G., P.C. Lippert, D.J.J. van Hinsbergen, M.J.M. Meijers, and P. Kapp, 2010. Palaeolatitude and age of the Indo-Asia collision: Palaeomagnetic constraints. Geophys. J. Int., 182: 1189-1198, doi: 10.1111/j.1365-246X.2010.04698.x. Published, 07/12/2010.
    http://onlinelibrary.wiley.com/doi/10.1111/j.1365-...
  • Lippert, P.C., 2008, Big discovery for biogenic magnetite. Proc. Nat. Acad. Sci. USA, v. 105, p. 17595-17596, doi: 10.1073.pnas.0809839105. Published, 11/18/2008.
    http://www.pnas.org/content/105/46/17595.full
  • Wang, C.S., X.X. Zhao, Z.F. Liu, P.C. Lippert, S.A. Graham, R.S. Coe, H.S. Yi, L.D. Zhu, S. Liu, and Y.L. Li, 2008. Constraints on the early uplift history of the Tibetan plateau: Proc. Nat. Acad. Sci. USA, 105, 4987-4992, doi:10.1073.pnas.0703595105. Published, 04/01/2008.
    http://www.pnas.org/content/105/13/4987
  • Lippert, P.C. and J.C. Zachos, 2007. A biogenic origin for anomalous fine-grained magnetic material at the Paleocene-Eocene boundary at Wilson Lake, New Jersey. Paleoceanography, 22, PA4104, doi:10.1029/2007PA001471. Published, 12/05/2007.
    http://onlinelibrary.wiley.com/doi/10.1029/2007PA0...
  • Zhao, X.X., P. Riisager, M. Antretter, J. Carlut, P.C. Lippert, Q.S. Liu, G. Galbrun, S. Hall, H. Delius, and T. Kanamatsu, 2006, Unraveling the magnetic carriers of igneous cores from the Atlantic, Pacific, and the southern Indian oceans with rock magnetic characterization. Physics of the Earth and Planetary Interiors, 156: 294-238, doi:10.1016/j.pepi.2005.08.005. Published, 07/14/2006.
    http://www.sciencedirect.com/science/article/pii/S...